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Transient methods, such as those with pulse- or stepwise heating, have often 
been used to measure thermal diffusivity of various materials including layered 
composite materials. The aim of the present study is to investigate effects of 
various parameters on the measurement of thermal diffusivity when the 
transient methods are applied. Mainly a two-layered material in the pulsewise 
heating method is considered because of its simplicity and usefulness in identi- 
fying and determining the effects of the parameters. First, it has been shown 
that there exists a special condition for determining the thermal diffusivity of a 
component in the two-layered material whose other relevant thermophysical 
properties are known. Second, it has been shown that the thickness of the laser- 
beam absorption layer, which inevitably makes sample material into the two- 
layered material, may cause a relatively large error when the thermal diffusivity 
of the base material is high. Finally, it has been derived a definite relation 
between the apparent thermal diffusivity obtained from the temperature response 
and the mean thermal diffusivity, which has a physical meaning related to the 
thermal resistance. 

KEY WORDS: pulsewise heating method; temperature response; thermal 
diffusivity; two-layered material. 

1. I N T R O D U C T I O N  

T r a n s i e n t  m e t h o d s ,  such  as those  wi th  pulse-  o r  s tepwise  hea t ing ,  have  

of ten  been  used  to m e a s u r e  t h e r m a l  diffusivi ty of  p u r e  meta ls ,  a l loys,  

ce ramics ,  etc. These  m e t h o d s  h a v e  also been  used  to  d e t e r m i n e  the  t h e r m a l  

diffusivi ty of  a c o m p o n e n t  in the  t w o -  o r  t h r ee - l aye red  c o m p o s i t e  mate r ia l s ,  

us ing  ana ly t i ca l  so lu t i ons  for  the  two-  o r  t h r ee - l aye red  ma te r i a l s  in the  
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pulsewise heating method [1 ], and with that for the three-layered material 
in the stepwise heating method I-2, 3]. Although analytical solutions exist 
for these transient methods, appropriate conditions for the measurement of 
the thermal diffusivity have not been discussed thoroughly. 

In such transient methods, it is often required for sample materials to 
have laser-beam absorption layer, such as carbon coating layer. Since these 
samples inevitably become two-layered materials, the thermal diffusivies 
obtained from the temperature response are merely apparent and some- 
times are subject to great errors. However, error caused by the laser-beam 
absorption layer has not been fully discussed in the literature. 

Moreover, needs have arisen for the transient methods to evaluate 
thermophysical properties of layered composite materials, such as electronic 
materials and materials resistant to wear, corrosion, and heat. Although 
resulting data for the temperature response in the transient methods contain 
information related to the thermophysical properties of the individual 
layers, the thermal diffusivity obtained from the temperature response at 
the rear surface is merely apparent and different from the mean thermal 
diffusivity, which is calculated from the thermal resistance. Then, a definite 
relation between the apparent and the mean thermal diffusivities is required 
for the direct evaluation of the thermophysical properties of layered 
materials in the transient methods. 

The objective of the present study is to shed more light on these 
measurement methods for layered materials, with changing parameters, 
such as Fourier numbers, ratio of heat capacities, ratio of thermal diffusion 
times, etc., over wide ranges. A two-layered material in the pulsewise 
heating method is considered here because of its simplicity and usefulness 
in identifying and determining the effects of the parameters. First, we 
determine applicable ranges for various parameters when we measure 
the thermal diffusivity of one layer in the two-layered material whose other 
relevant thermophysical properties are known. Second, we evaluate errors 
which are caused by the existence of the absorption layer on the base 
materials. Finally, we derive a definite relation between the apparent 
thermal diffusivity obtained from the temperature response and the mean 
thermal diffusivity by obtaining an approximate expression for the 
apparent thermal diffusivity analytically. 

2. FORMULATION 

An evaluation of the thermal diffusivity of a two-layered material 
(Fig. 1) has been conducted. In the following, we restrict ourselves to the 
pulsewise heating method because nearly the same results can be obtained 
for the stepwise heating method. In the usual pulsewise heating method, the 



Thermal Diffusivity of Two-Layered Materials 333 

Heat Pulse 

Layer I ct~, Pl, C1, I1 

Layer 2 (z2, P2, c2, [2 

Temperature Detector 
Fig. 1. 

0 

Zl 

Z2 

Schematic diagram of a two-layered material. 

front surface is subjected to a short pulse and temperature history at the 
rear surface is recorded to determine the thermal diffusivity of a sample 
material; the resulting data for the temperature response contain informa- 
tion related to the thermophysical properties of the individual layers in the 
sample material. Since the formulation of the present model has already 
been conducted by Lee [-1 ], herein only the assumptions and the final solu- 
tion are presented. Solving the heat diffusion equation with the appropriate 
boundary conditions under the assumptions of 

(1) one-dimensional heat flow, 

(2) no heat loss from the sample surface, 

(3) no thermal contact resistance between layers, 

(4) heat pulse being uniformly absorbed on the front surface, 

(5) each layer being homogeneous, and 

(6) constant thermophysical properties of each layer, 

the normalized temperature rise at the rear surface has been derived as 

V = l + 2  ~ ((D1Z1-l-~ (7k/"2)2' (1) 
k= 1 (/)1)~1 COS(])k(D1) + 0)2Z2 COS(])kfD2) 

where 

Z1 =A1/2+  1, x2=A1/2 - 1, o91 =?]1/2 + 1, (/)2=I]1/2 - 1 (2) 

A,  = 2 i / ~ i ,  rh = li/x~ii (3) 

Ai/j = A J A j ,  qi/j = rli/rlj (i, j = 1, 2) (4) 
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and ~k is the kth positive root of the characteristic equation of 

Z1 sin(~ogl) + Z2 sin(Ten2) = 0 (5) 

Here 2 is the thermal conductivity, a the thermal diffusivity, l the length of 
the layer, A the heat-penetration coefficient, and q the thermal diffusion 
time. In the work of Lee [ 1 ], the following parameters were used: 

H i = Airli , Hi/j = H i / H  j (i, j = 1, 2) (6) 

If we use t i n ,  which is the time duration until the temperature rise, V, 
reaches 50% of its maximum rise, the Fourier number of each layer is 
expressed as 

F o  i = ai t l /2 /12i  = t l /2 / t l  2 (i = 1, 2) (7) 

3. PROBLEMS IN DETERMINING THERMAL DIFFUSIVITY 
OF MATERIALS 

3.1. Determination of Thermal Diffusivity Using a 
Two-Layered Sample Material 

The thermal diffusivities of various materials have been determined 
using the two-layered materials whose relevant thermophysical properties 
except for the thermal diffusivity of one layer are known. Although this 
measurement method is widely used, appropriate selection of materials to 
be combined for the accurate measurement of the thermal diffusivity has 
not been fully discussed. In this section, we investigate relations between 
parameters which influence the determination of the unknown thermal 
diffusivity. 

First, let us investigate the relation between the Fourier numbers of 
individual layers defined by Eq. (7). Before numerical calculation, we 
examine several limiting solutions which we can derive analytically. These 
limiting solutions enable us to confirm the numerical results. 

Case I. When ~/1/2--'0 and A1/2-- '0 ,  that is, X I = - X 2 = I  and 
co 1 = -co 2 = 1, we have the characteristic equation and its roots as 

s in(y)=0;  7 = k ~  (k=  1, 2,. �9 .) (8) 

From Eq. (1) the temperature rise is expressed as 

V = l + 2  ~ ( - 1 ) k e  -(k~)2v~ (9) 
k = l  
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which yields Fo2=-[n(O.2542) /~z2=O.1388 for V=0.5 .  Since F o z / F o  1 = 
r/l/2 = 0, Fo l  corresponding to this situation is infinity. 

Case lI. When q l / 2 - " ~ 0  and H 1 / 2 = A 1 / z q l / 2 - + o o ,  w e  have the 
characteristic equat ion and its roots  as 

tan(7) = 0; 7 = ( 2 k -  1) ~/2 (k = 1, 2 , . . . )  (10) 

F r o m  Eq. (1) the temperature  rise is expressed as 

V =- 1-- (4) ~ C'~--l~'s176 (11) 

k = l  

which yields Fo 2 = -41n(O.3927)/rc 2 = 0.3788 for V =  0.5. Since Foz /Fo  I = 
ql/2 = 0, Fo 1 corresponding to this situation is infinity. 

Case IlL When r/1/2= 1 and A1/2=1, that  is, )~1=2, Z2=0 ,  co2=2,  
and (D 2 = 0, we have the characteristic equat ion and its roots as 

sin(27) = 0; 2), = kTr ( k =  1, 2 , - . - )  (12) 

F rom Eq. (1) the temperature  rise is expressed as 

V = l + 2  ~ ( - 1 ) k e  -~k=/2)2v~ (13) 
k=2 

which yields F o  2 = -41n(O.2542)/rc 2 =0.5551 for V=0.5 .  Since Fo2/FOl = 
q2/2 = 1, Fo l  corresponding to this situation is also 0.5551. 

Case IV. When r/2/2 ~ oo and Hi~ 2 = A 1/2~/1/2 ~ 0% that  is, 
A2/~z2=A2/1)'2=l and g I 2 / l ( D 2 = t ] 2 / l ( D 2 = l ,  w e  have the characteristic 
equat ion and its roots  as 

sin(r/i/27) = 0; r/1/.27 =kTz (k-= 1, 2, . - . )  (14) 

F rom Eq. (1) the temperature  rise is expressed as 

V = l + 2  ~ ( - 1 ) k e  -(k'~)2v~ (15) 
k=2  

which yields FOl =--ln(O.2542)/zt2=O.1388 for V=0.5 .  Since Fo2 /Fo l  = 
q l / 2  - +  o o ,  F o  2 corresponding to this situation is infinity. 

Case V. When q2/2 ~ oo and H1/2 = A2/2 q2/2 - - ~  0, we have the 
characteristic equat ion and its roots  as 

tan(r/i/27) = 0; q~/27 = ( 2 k -  1) 7(2 (k = 1, 2 , . . - )  (16) 

840/13/2-9 
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From Eq. (1) the temperature rise is expressed as 

( 4 )  e - [(2k- 1) ~/232 F~ 
V= 1 -  f ( ~ 1 ~  i (-~---i) (17) 

k=l 

which yields Fol = -4ln(0.3927)/~2=0.3788 for V=0.5.  Since Fo2/Fo 1 = 
~/1/2 --' ~ ,  Fo2 corresponding to this situation is infinity. 

Relation between Fourier numbers for finite values are obtained from 
numerical calculations. Figure 2 shows the relation between Fourier 
numbers Fol and Fo2, with the ratio of the heat capacities H~/2 and the 
ratio of the thermal diffusion times ~Tm taken as parameters. It is seen 
that initially Fo2 decreases rapidly and then slowly with increasing Fol ,  
depending on both H~/2 and qu2. We see that the Fourier numbers are 
determined uniquely as Fo l=Fo2=0 .5551 ,  regardless of HI~2, when 
q~/2 = 1, as is pointed out for Case III, point 4 in Fig. 2. This means that 
we can determine Fo2 (or FOl) from For (or Fo2) at this point even 
though the ratio of the heat capacities of the two layers are unknown. 
Therefore, it is recommended to choose this condition for the measurement 
of the thermal diffusivity with two-layered material. It is also noted that 
Fo2 (or Fo~) changes drastically when Fo~ (or Fo2) is small. In this range, 

~ ~ / ~ H l n  =0.01 1 2.5 lql/2= 
1,5 2 --2 

i 2 ~ 0 . 1  3 =1.25 I 4 =1 
10 5 =0.8 6 :0.5 
100 7 --0.4 

~1013 ' ~ ,o 

0 0.5 1.0 1.5 2,0 
Fo~ 

Fig. 2. Relation between the Fourier number based on the first layer and that based on the 
second layer, with the ratio of the heat capacities and the ratio of the thermal diffusion times 
taken as parameters. 
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the determination of FO 2 (or FOl) from given Fol (or Fo2) may inevitably 
have a great error because given that Fol  (or Fo2) itself has uncertainty in 
practical situations. 

Figure 3 shows the relation between Fol and H2/1, with r/2/~ and Fo2 
taken as parameters. When 112/1 = 1 (or FO 2 --0.5551 ), Fo 1 is determined as 
0.5551 regardless of H2/1. When q2/1 < 1 (or Fo2>0.5551),  Fo 1 decreases 
with decreasing 1-1=/1; when i/2/1 > 1 (or Fo2<0.5551),  Fo 1 increases first 
slowly and then rapidly with decreasing H2/1. We see from Fig. 3 that 
determination of Fol  may have a great error when H2/1 is small; that is, the 
heat capacities of relevant layers are very much different from each other. 

3.2. Measurement of Thermal Diffusivity of Carbon Layer Using 
a Two-Layered Sample Material 

In order to confirm the results in the previous section, an experiment 
has been conducted to measure the thermal diffusivity of the carbon layer 
which is formed by the spray coating on the copper disk of 10ram in 
diameter. In the experiment, the front surface of the copper is subjected to 
the heat pulse. Since we have obtained the approximate value of the thermal 
diffusivity of the porous carbon layer from the preliminary experiment, 
we have prepared three sample materials which have ~ 1/2 ~ 1 depending on 
the thickness of the copper disk, as listed in Table I. In Table I subscripts 
1 and 2 designate copper and carbon, respectively. The thermophysical 
properties of copper listed in Table II [4]  are also used. 

10 

1 

/ 

0.5 0.4 0.3 0.;25 -0.2 . . . . .  '1/'q/2 
2 ] - - F o 2  

, / \  " - .  "'- . 

0.5551 Fol 

Fig. 3. Relation between Fo 1 and H2/1, with Fo2 and r12/l taken as parameters. 
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Table I. 
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Experimental Results on the Measurement  of Thermal Diffusivity of the 
Carbon Layer Using a Two-Layered Sample Material 

Sample material 1 Sample material 2 Sample material 3 

l x (mm) 2.892 2.644 2.002 
l 2 (mm) 0.248 0.190 0.150 

11/l 2 11.68 13.95 13.31 
t m (ms) 37.32 30.68 18.16 

A a B b A ~ B b A ~ B b 

P2 (kg.  m - 3 )  2.20 • 103 0.78 x 103 2.20 • 103 0.95 • 103 2.20 x 103 0.92 • 103 
H m 26.18 74.07 31.25 72.72 29.85 71.42 
r/1/2 1.041 1.040 1.054 1.054 1.029 1.029 
Fox 0.5265 0.5265 0.5179 0.5179 0.5345 0.5345 
Fo 2 0.5706 0.5700 0.5756 0.5750 0.5660 0.5657 

e 2 ( m 2 . s  1) 9 . 3 7 x 1 0 - 7  9 .36x10  7 6 .74x10  7 6 . 7 4 x 1 0 - 7  7 . 0 5 x 1 0 - v  7 .05x10  7 

a Density of graphite listed in Table II is used for the determination of the thermal diffusivity 
of the carbon layer. 

b Measured density of the carbon layer is used for the determination of the thermal diffusivity 
of the carbon layer. 

In Table I, thicknesses of the individual layers, half-times measured at 
the rear surface of the sample materials, and densities of the carbon layers 
are listed. Also listed are the values of the parameters, which are deter- 
mined in the iterative data processing, and the thermal diffusivities of the 
carbon layers. In column A the density of graphite listed in Table II is used, 
while in column B the measured density of the carbon layer is used. Since 
the condition of 01/2 ~ 1 is satisfied, the thermal diffusivity of the carbon 
layer does not depend on the choice of the density. Although the measured 

Table II. Thermophysical  Properties of Selected Materials [4]  

Material 
Specific heat Thermal 

Density p capacity c diffusivity a 
( k g . m  -3) ( J -kg  1 . K - 1 )  (m2.s  -1) 

Copper 8.94 • 103 3.81 x 102 1.18 x 10 4 
Nickel 8.91 x 103 4.39 x 102 2.28 x 10 5 

Ti tanium 4.54 x 103 5.27 x 102 7.22 x 10-6 
Quartz  2.21 x 103 7.11 x 102 8.61 • 10 -7 

Graphite 2.20 x 103 6.91 x 102 1.57 x 10 -5 
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thermal diffusivities of carbon layers have different values for the sample 
materials, we can attribute it to the difference in the densities (or porosities) 
of the carbon layers. 

4. EFFECT OF CARBON C O A T I N G  LAYER ON THE 
M E A S U R E M E N T  OF T H E R M A L  DIFFUSIVITY 

4.1. Apparent Thermal Diffusivity 

In the pulsewise heating method it is often required that sample 
materials have absorption layers of the laser beam, such as carbon coating 
layers. Inevitably, these samples become two-layered composite materials 
and the thermal diffusivity obtained from the temperature response 
becomes an apparent one. However, error caused by the coating layer has 
not been fully discussed in the literature. Here we examine the dependence 
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Fig. 4. Apparent thermal diffusivity as a function of the 
first layer thickness, with the product of the heat capacity 
and the density taken as a parameter for a ~/2 = 1. Solid curves 
are obtained from the analytical solution; dashed curves 
are obtained from the approximate expression. 
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of the apparent  thermal diffusivity of a two-layered material on the 
thermophysical  properties and thickness of individual layers. 

The apparent  thermal diffusivity ae of a two-layered material which is 
regarded as homogeneous  can be formally expressed as 

0.1388 = aet l /2 /L 2, L = It + 12 (18) 

As shown in Figs. 4-7, the apparent  thermal diffusivity ae depends on the 
ratio of the thermal diffusivities, at~2, the ratio of the heat capacites, 
(pc)1/2, and the ratio of the thicknesses, l t /L.  We see in Fig. 4 that  the 
apparent  thermal diffusivity ae changes even when at = a2. This is due to 
the change of the temperature rise which depends on the heat capacities of 

31112 
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Fig. 5. Apparent thermal diffusivity as a function of the 
first layer thickness, with the product of the heat capacity 
and the density taken as a parameter for al/2 = 10. Solid 
curves are obtained from the analytical solution; dashed 
curves are obtained from the approximate expression. 
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the layers. The points  at which ae can be determined regardless of the heat  
capacities satisfy the condi t ion of ~/1/2 = 1, as pointed out in Section 3.1; 
ll/L=0.5 in Fig. 4, ll/L=0.760 in Fig. 5, 11/L=0.909 in Fig. 6, and 
ll/L = 0.969 in Fig. 7. 

Al though results for the stepwise heating me thod  are not  shown 
here, nearly the same trend is observed as that  for the pulsewise heating 
me thod  shown not  only in Figs. 4 - 7  but also in Figs. 2 and 3. However ,  
it is confirmed that  the apparen t  thermal  diffusivity depends on the 
measurement  method,  which means  that  the apparen t  thermal  diffusivity 
cannot  be a thermophys ica l  p roper ty  and that  it must  be distinguished 
f rom the mean  thermal  diffusivity which has a physical  meaning.  

4.2. Errors Caused by the Carbon Coating Layer 

As an example,  let us examine errors caused by the ca rbon  coat ing 
layers which are formed on base materials  (Table I I )  [4 ]  as laser-absorpt ion 

510 -I 
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Fig. 6. Apparent thermal diffusivity as a function of the 
first layer thickness, with the product of the heat capacity 
and the density taken as a parameter for a~/2 = 100. Solid 
curves are obtained from the analytical solution; dashed 
curves are obtained from the approximate expression. 
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layers. Figure 8 shows the difference between the Fourier  number  Fo2 
for the base material  and the apparent  Fourier  number  Fo  e defined in 
Eq. (18), as a function of  the thickness ratio of the carbon layer to the base 
material  layer. We see that  the difference, that  is, error increases with 
increasing thickness ratio. It is also shown that  the error becomes large 
when the thermal diffusivity of the base material is high. When  we consider 
the si tuation that  there exists carbon coating layer (ll = 30 #m)  on copper  
sample (/2 = 3 mm),  the apparent  thermal diffusivity is 7% less than the 
true thermal diffusivity. We note that  the thickness of the carbon coating 
layer may  cause a relatively large error  for materials of high thermal 
diffusivities. 

3 1 1 / 2  
0 0.01 0.02 0.05 0.I 

1 i q k I r 

10-1 

5 
"~ 10-2 
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10-3 

- -  Theory  
. . . . .  A p p r o x i m a t i o n  

1 pc112=10 
2 1 
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1OD 

I I I r 

0 0.2 0.4 0.6 0.8 1.0 

[ i l L  

Fig. 7. Apparent thermal diffusivity as a function 
of the first layer thickness, with the product of the 
heat capacity and the density taken as a parameter 
for a m = 1000. Solid curves are obtained from the 
analytical solution; dashed curves are obtained from 
the approximate expression. 
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Fig. 8. Errors in thermal diffusivity of four different materials caused by 
the thickness of the carbon coating layer. 

5. APPARENT AND MEAN THERMAL DIFFUSIVITIES 

5.1. Approximate Expression of Apparent Thermal Diffusivity 

There are needs to apply the transient methods for the evaluation of 
the thermal diffusivities of layered materials which are going to be used as 
electronic materials and materials resistance to wear, corrosion, and heat. 
For  the direct evaluation, a definite relation between the apparent and 
the mean thermal diffusivities is indispensable because the temperature 
response at the rear surface of a sample only gives us the apparent  thermal 
diffusivity even though information related to the thermophysical proper- 
ties of the individual layers is contained in it. 

In order to obtain the relation between the apparent and the mean 
thermal diffusivities, we first obtain an approximate expression for the 
apparent  thermal diffusivity shown in Figs. 4-7. For this purpose, the 
perturbation method is applied around ~1/2 = 1 and Fo2 = 0.5551. If we let 

= ~]1/2 -- 1 (19) 

then the characteristic solution can be expressed as 

27 = (1 + eTv + e27s) kTz (k = 1, 2,...) (20) 
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because the k th  positive root  is 2~ =kr t  for ~1/2  = 1. Substituting Eq. (20) 
into the characteristic equation,  Eq. (5), and compar ing terms of the same 
order  of e, we obtain 

1 + ( 2 x  - 1 )(  - 1 )k 
7 v =  2 , and 7 s = 7  2 (21) 

where 
A x/2 

- - -  (22) 
1 -'}-al/2 

Since we can express as 

mlZ1 + (02Z2 = 2(1 + A1/2)(1 -+- etr (23) 

(Ol  Z1 COS(])k(-O1) "~- ( D 2 ~ 2  COS(•k( '02)  

=2(l+A1/z)(-l)k[1-Wv-gZ~(krcl+--~Yv) 2] (24) 

the temperature  rise in Eq. (1) for V = 0 . 5  becomes 

(1 + e~) exp - (1 + eyv + e272)2F02 

0 . 5 = 1 + 2  ~ ( - 1 )  k 2 (25) 
k=l 1 __ W F _  g2 1 ( k u  ~ _ . ~ )  

If we further express 

Fo2 = Fog, o(1 + g)gF + g2fs); Fo2,o=0.5551 (26) 

substitute Eq. (26) into Eq. (25), and compare  the terms of the same order  
with respect to e, we have the following relations. 

0(1): 
4 - 0 . 2 5  - x 0  -~- x 0 - x 9 - 16 25 . = - ' i -X 0 - - X  0 @ " ' ' ,  

( 7~ 2 

Fo2 o] =0.25417 (27) Xo = exp \ - ~- , 
/ 

0(,).' 

0 = - Xo[(2~c - 1) + {/v - 2(1 - K)} ln(xo)]  + 4x4(fv - 2K) ln(xo) 

- -  x 9 [ (2~c - -  1 ) + 9 { f v  - -  2 (  1 - -  ~ )  } l n ( x o )  ] 

+ 16x16(/v -- 2x) ln(xo) . . . .  (28) 
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O(d)." 
0 = - x  o [.(2~c -- 1){rc2(21r - 1 ) -  8(1 - ~ ) }  

/ g 

+ {fs q-/~F( 4to -- 3 ) +  (1 -- tO)(5 -- 7~)} ln(xo) 

+ 5 { / v - - 2 ( 1 - - K ) } 2  ln2(xo) 

4 [4rc2(2~ - 1) 2 
+ X  o - _ + 4( /s  -- 2/v ~C + 3~C2) ln(xo) 

+ 8( /v  -- 2~) 2 ln2(xo)] 

9 [-(2~c - 1){9~2(2~c -- 1 ) -  8(1 - ~c)} 
- x ~  [ 8 

+ 9{/s  +/v(4~c - 3) + (1 - ~c)(5 - 7~c)} ln(xo) 

+ -~  {/v - 2(1 - ~ct} 2 ln2(xo) 

+ Xo~6 i 167t2(28_ 1 )2+ 16( , / s -  2,dr ~: + 3~c 2) ln(xo) 

+ 128(/' v - 2~:) 2 ln2(xo)] 
J 

(29) 

Evaluating Eqs . (28)  and (29) with Xo=0.25417, we can derive the 
following equations: 

( @ )  = 0 . 5 -  0.3592(~c- 0.5), ~ [/ 's - ( ~ ) 2 ]  = 0.3572(~ - 0.5) 2 (30) 

If we further note in Eq. (26) that 

F o 2 , o = 4 F o e =  2 . 4t/e t 1/2, 
t 2 

~2e = - -  (31) 
ae 

we obtain the approximate  expression for the apparent  thermal diffusion 
time as 

~/e = 2r/1 [ ( A F  - -  2As) + (1 - A v + As) r/2, q + Ast/l/2] (32) 
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where 

A v = -~- = 0.5 - 0.3592(K- 0.5) (33) 

As = ~ [/'s - ( @ ) 2 ]  = 0.3572(~c- 0.5) 2 (34) 

In Figs. 4-7, Eq. (32) is also shown by dashed curves. Although the 
present perturbation is conducted around rh /2=l  , we see that the 
approximate expression of Eq. (32) is effective in the relatively wide, 
practically important range of 0.3 < 111/2 < 2 even though al/2 varies from 1 
to 103. It is noted that Eq. (32) becomes an accurate expression when 
A 1/2( = H1/2112/1) = 1. 

5.2. Relation Between Apparent and Mean Thermal Diffusivities 

Since we have derived the approximate expression for the apparent 
thermal diffusivity by Eq. (32), we can correlate it with the mean thermal 
diffusivity obtained from the thermal resistance. The mean thermal 
diffusivity am for the two-layered material is expressed as 

L l I l 2 
- - +  - -  ( 3 5 )  

amPmCm alplci  a2P2C2 

with the relations of 

P,, ,L=pll l  + p212, CmPmL=ciPill +C2P212 (36) 

Since Eq. (35) can be rewritten as 

L 2 
- -  =//2 m =//2[(1 + H2/1) + 11~/i(1 + H1/2)] (37) 
am 

we can express a definite relation between the apparent and the mean 
thermal diffusivities as follows: 

a--~m=4[(Av-2As)+(1- -Av+ As)112/l + Asrh/212 (38) 
at (1 + H2/1) +/'/22/1(1 + Hi~2) 

within the range where the approximate expression of the apparent thermal 
diffusivity can be applicable. 

Once Eq. (38) has been derived, the mean thermal diffusivity can be 
obtained from the apparent thermal diffusivity when all the thermophysical 
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properties of individual layers are known. This condition may always be 
satisfied for the two-layered materials because we can anticipate that the 
thermal diffusivity of one layer and other individual thermophysical 
properties are known or easily determined and that the thermal diffusivity 
of the other layer is also determined by the method which has been used 
to determine thermal diffusivity of the material in the two-layered com- 
posite material. Then, after incorporating Eq. (38) into the measurement 
method with two-layered material described in Section 3, we can directly 
obtain the mean thermal diffusivity. 

6. CONCLUDING REMARKS 

In the present study, we have investigated the effects of various 
parameters on the measurement of the thermal diffusivity related to the 
transient method such as those with pulse- or stepwise heating. A two- 
layered sample material in the pulsewise heating method is considered 
because of its simplicity and usefulness in identifying and determining the 
effects of those parameters. 

First, we have considered the situation to determine the thermal 
diffusivities of a material (two-layered sample) whose thermophysical 
properties except for the thermal diffusivity of one layer are known. 
Relations between parameters which affect the determination of the 
unknown thermal diffusivity have been clarified. It has been shown that 
there exists a special condition for the accurate measurement of thermal 
diffusivity. At this condition, the thermal diffusion time of each layer has 
the same value; accurate values of density and heat capacity of the material 
to be measured are not required. Then it is recommended to use this 
condition for the measurement of the thermal diffusivity for two-layered 
materials. 

Second, we have considered the effect of laser-beam absorption layer 
which is often required for sample materials in the transient methods. 
Since these samples inevitably become two-layered materials, the thermal 
diffusivity obtained from the temperature response is merely the apparent 
one, which depends on the measurement method. Based on the examina- 
tion of the dependence of the apparent thermal diffusivity of the two- 
layered material on the thermophysical properties and thickness of the 
layers, it has been shown that the thickness of the carbon coating layer 
may cause a relatively large error for materials of high thermal diffusivity. 

Finally, we have examined the relation between the apparent thermal 
diffusivity obtained from the temperature response and the mean thermal 
diffusivity calculated from the thermal resistance. An approximate expres- 
sion for the apparent thermal diffusivity has been analytically obtained in 
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the practically important range with the perturbation method, thereby a 
definite relation between the apparent and the mean thermal diffusivities is 
derived. After incorporating this relation into the measurement method 
with a two-layered material, the thermal conductivity as the heat-shield 
property of the two-layered material is anticipated to be determined 
directly. 
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NOMENCLATURE 

A Variable to express the approximate expression of the apparent thermal 
diffusivity 

a Thermal diffusivity 
c Specific heat capacity 
Fo Fourier number [=at/123 
/ Perturbed value of the Fourier number 
H Heat capacity [ = cpl] 
l Thickness 
t Time 
V Temperature ratio 

7 Positive root of the characteristic equation 
Small parameter defined by Eq. (19) 

~/ Thermal diffusion time [ = l/~] 
tc Parameter defined by Eq. (22) 
2 Thermal conductivity 
p Density 
X Parameter defined in Eq. (2) 
co Parameter defined in Eq. (2) 

Subscripts 

e Apparent 
i Value of ith layer (i = 1 and 2) 
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i/j Quantity of the ith layer divided by quantity of thejth layer (i, j = 1, 2) 
m Mean 
F First-order approximation 
S Second-order approximation 
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